
Passive Crowd Speed Estimation
and Head Counting Using WiFi

Abstract—In this paper, we propose a framework to sense oc-
cupancy attributes of an area, such as speed of a crowd traversing
through the area, the total number of people in the area, and the
rate of arrival of people into the area, using only the received
power measurements (RSSI) of two WiFi links, and without
relying on people to carry any device. We first show that the
cross-correlation between the two WiFi link measurements and
the probability of crossing a link implicitly carry key information
about the occupancy attributes and develop a mathematical
model to relate these parameters to the occupancy attributes
of interest. Based on this, we then propose a system to estimate
the occupancy attributes and validate it with 51 experiments
in both indoor and outdoor areas, where up to (and including)
20 people walk in the area with different possible speeds, and
show that our framework can accurately estimate the occupancy
attributes. For instance, our framework achieves a Normalized
Mean Square Error (NMSE) of 0.047 (4.7%) when estimating
the speed of a crowd, an NMSE of 0.034 (3.4%) when estimating
the arrival rate to the area, and a Mean Absolute Error (MAE)
of 1.3 when counting the total number of people. We finally run
experiments in an aisle in Costco, showing how we can estimate
the key attributes of buyers’ motion behaviors.

I. INTRODUCTION

Sensing the occupancy attributes of an area, such as the
corresponding speed of people when traversing the area, their
arrival/departure rate into/out of the area, as well as the
total number of people in the area can be useful in many
applications. For instance, retail stores can learn about the
popularity of the products in different aisles, if they know
buyers’ speed/density in different parts of the store. Consider
an aisle in a retail store containing a specific type of product,
for instance. Shoppers that are entering this aisle will walk at
a normal pace if the products in the aisle do not attract their
attention. On the other hand, they may slow down, or stop
to look at the items if they find them of interest. Therefore,
by estimating the average speed of the shoppers in an aisle,
the popularity of the products in that aisle can be inferred.
This information, in turn, can significantly help with business
planning. Similarly, museums can estimate which of their
exhibits are more popular, based on the speed of the visitors,
as well as their arrival rate into different areas. Smart cities
can further design the traffic signal timings for the pedestrian
crosswalks based on their speeds [1]. Furthermore, identifying
the slow areas can help with city planning by allocating new
roads and facilities. Public places, such as a train station, on
the other hand, can further detect abnormal behaviors if an
atypical slow down is detected in a particular area. Resources
can then be allocated accordingly.

In this paper, we propose a framework that can estimate the
occupancy attributes of an area, including the speed of
a crowd when traversing the area, the arrival/departure
rate into/out of the area, or the total number of people
in the area, using only the received signal strength (RSSI) of

two WiFi links in the area of interest, and without relying
on people to carry any device (i.e., passively). Since a
person may not have a constant speed in an area, in this paper
“speed estimation” refers to estimating the average speed
of the people, where the average is the spatial average
of the speed of a person in that particular area.1 In other
words, people can stop several times in an area, or change their
instantaneous speed. We are then interested in estimating their
average speed, which is area-dependent and can thus reveal
valuable information about an area.

To keep the paper applicable to many scenarios, we consider
two possible general cases, as shown in Fig. 1. The first
case (Fig. 1(a)), can represent a museum, a conference, or an
exhibit-type setting where the total number of people inside
the overall area changes slowly with time such that it can
be considered constant over a small period of time. People
can have any motion behavior in this area and can possibly
traverse the area several times back and forth, depending on
their interest. We refer to this case as the closed area case. The
second case (Fig. 1(b)), on the other hand, captures the cases
where people can enter and exit through both ends, and can
form flow directions through the area. Then the total number of
people can change rapidly with time and cannot be considered
a constant. This case represents scenarios like train stations or
a store aisle. We then refer to the second case as the open
area case. As we shall show in this paper, the estimation of
occupancy attributes can be achieved under the same unifying
framework for both cases, by estimating the rate of arrival of
people for the open case, and the total number of people in
the area (over a small period of time) for the closed case.
A. Related Work

We next discuss the state-of-the-art on estimating the occu-
pancy attributes of an area.

1) Infrared-Based Approaches: Infrared (IR) sensors are
mainly used for occupancy detection by sensing the motion of
the occupants [2]–[4]. IR sensors located at the entrances/exits
can also count the number of people entering and exiting the
area [5], [6]. Recently, IR sensors are also used to estimate the
number of people in an area, without relying on door counters
[7]. However, they are limited to counting up to 8 people in the
area. More recent work also classifies the walking speed of a
single person in an area based on IR sensors [6], [8]. However,
there is no work based on IR sensors that can estimate the
speed of a crowd (i.e., estimate the speed beyond one person),
or count the number of people in an open setting, or count
beyond 8 people for the closed case.

2) Vision-Based Approaches: Vision-based methods can
be potentially used to estimate the occupancy attributes of

1We may drop the term “average” throughout the paper for brevity.
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Fig. 1: Two example scenarios of the problem of interest, (a) a closed and (b) an open area. A pair of WiFi links are located in the area. We are then interested
in estimating the occupancy attributes of the area, based on only WiFi RSSI measurements of the links. (a) shows an example of a closed area, such as
an exhibition or a museum, where the total number of people inside the area changes slowly with time and people can traverse back and forth or change
directions inside the area any number of times depending on their interest. For a closed area, we are then interested in estimating the total number of people
in the area and their walking speed, (b) shows an example of an open area such as a train station, where people can come and go from both sides and can
form flow directions. In this scenario, we are then interested in estimating the walking speed and the rate of arrival of people into the area.

an area [9]–[13]. This involves continuous recording of an
area, using cameras, followed by computer-vision algorithms
for processing the videos. However, while consumers are fine
with security cameras being probed in an on-demand manner
for security purposes, serious privacy concerns arise when
cameras are utilized in public places to analyze customer
behaviors. For instance, a recent survey on retail shoppers [14]
revealed that 75% of the people who understood the capabil-
ities of vision-based tracking technologies found it intrusive
for retails to track their behavior using such a technology.
Furthermore, employing such tracking techniques could lead
to shoppers choosing not to visit the corresponding stores [15].
In summary, vision-based occupancy estimation methods have
the major drawback of privacy violation. Furthermore, they can
only estimate the occupancy attributes in the areas that are in
the direct line-of-sight of the cameras, while Radio Frequency
(RF) based approaches have a through-wall sensing capability.

3) Device-based Active RF Approaches: The device-
based active methods depend on the RF signals transmitted
from a device carried by people in the area to assess the
occupancy attributes [16]–[18]. However, these methods re-
quire the shoppers to carry a wireless device, or an on-body
sensor, which limits their applicability. More importantly, if a
store is to use shoppers’ devices to gather store analytics, it
can only gather crude, low resolution tracking data, based on
monitoring which router the device is connected to in the store
(e.g., this data may not directly translate to speed estimation
in different aisles). Even then, serious privacy concerns limit
the applicability of such an approach in public places. For
instance, Nordstrom, a clothing company which implemented
an active WiFi-based in-store tracking technology to analyze
the behavior of their customers, withdrew it due to privacy
concerns of the shoppers [19]. Furthermore, a recent survey on
active WiFi tracking technology [15] revealed that 80% of the
shoppers do not like to be tracked based on their smartphones,
while 43% do not want to shop at a store that employs active
WiFi tracking technology.

4) Device-free Passive RF Approaches: The device-free
passive methods, on the other hand, leverage the interaction
of RF signals with the pedestrians and hence do not require
the pedestrians to carry any device. In this manner, they can
preserve the privacy. For instance, [20]–[22] use the variations

in the WiFi RSSI signals, caused by people, to estimate the
number of people. [23] uses channel state information (CSI)
measurements and its corresponding variations for counting.
However, these methods rely on extensive prior calibrations to
the extent of running an actual experiment with several people
walking in the area. They further require several wireless links,
and are focused on closed areas only (i.e., cannot handle
time-varying number of people in the area). [24] estimates
the number of people in an area by minimizing the required
prior calibration. However, they have to assume the speed of
the people, and further only focus on the closed-area case.
In terms of speed estimation, some recent work started to
estimate the speed of people in a device-free manner. For
instance, [25] estimates the speed of a single person walking
in a circle of radius 2 m, based on the RSSI measurements
of a mobile phone located at the center of the circle. [26]
classifies the speed of a single person based on the FM radio
receivers. However, all these methods require an extensive
prior training phase and are limited to a single person. In [27],
RSSI measurements of several WiFi links are used to track up
to 4 people walking in the same area. Such an approach can
in principle be extended towards speed estimation. However,
this and other work on tracking typically have to assume very
few people (less than 5). Moreover, in order to estimate the
speed of a crowd of pedestrians, there is no need to track
every individual, as we shall see in this paper. In summary, to
the best of our knowledge, there is no work in the literature
that can estimate the speed of a crowd passively. Furthermore,
there is no work that can jointly estimate the speed and total
number/rate of arrival of people.

In this paper, we propose a system to estimate both the
crowd speed and crowd count (i.e., total number of people for
the closed case and arrival rate to the area for the open case),
passively, and by using only a pair of WiFi links in the area.
We next summarize our main contributions.

• We mathematically characterize the cross-correlation be-
tween the two WiFi link measurements and show that it
contains key information about the crowd speed in the area.

• We mathematically characterize the probability of crossing a
link and explicitly show its dependency on the total number
of people for the closed case, and on the rate of arrival of



people for the open case. Our mathematical characterization
is general in the sense that it can include any type of motion
patterns dictated by the environment.

• We implement a framework to estimate the crowd speed,
number of people, and rate of arrival of people in an area,
using a pair of WiFi links, and validate its performance
using a total of 51 experiments, in both indoor and outdoor
areas, for both open and closed cases, and with up to (and
including) 20 people, and show that our framework can
accurately estimate the occupancy attributes of an area in a
device-free passive manner. To the best of our knowledge,
this is the first demonstration of passive crowd speed
estimation, as well as the first demonstration of passive
joint estimation of crowd speed and count for both open
and closed areas.

• We deploy our framework in an aisle of a local retail store,
Costco, and estimate the behavior of shoppers in the aisle.
The rest of the paper is organized as following. In Section II,

we mathematically characterize two key statistics, the cross-
correlation between two WiFi links, and the probability of
crossing a link, and show how they carry vital information on
the crowd speed and number of people/arrival rate, and pro-
pose a methodology to estimate them accordingly. In Section
III, we thoroughly validate our framework with 51 experiments
where up to 20 people walk in both indoor and outdoor areas,
and for both closed and open scenarios. We further test our
methodology in Costco. We conclude in Section IV.

II. PROPOSED METHODOLOGY AND SYSTEM DESIGN

In this section, we propose a system to estimate the occu-
pancy attributes of an area, i.e., the speed of a crowd as well as
the total number (or arrival rate for the open case), using only
a pair of WiFi links, as shown in Fig. 1. More specifically,
we first show that the cross-correlation between the two links
is mainly a function of the crowd speed. We next derive
a mathematical expression for the probability of pedestrians
crossing a WiFi link. Our analysis shows that these parameters
carry key information on the speed/number of the pedestrians,
which we then use to estimate the occupancy attributes. We
next start by summarizing a probabilistic model to capture the
motion dynamics of a casual walk in the area, followed by
discussing how occupants affect the received signal power.
A. Pedestrian Motion Model

In this paper, we extend the pedestrian motion model
developed in [24], which captures casual walking patterns, to
more general cases where environmental characteristics can
also be captured.

Consider the motion of a single person in the workspace.
Let x(k), y(k), and θ(k) denote the position along x-axis, the
position along y-axis, and the heading of the person w.r.t. the
x-axis, at time k, respectively, as marked in Fig. 1(a). In a
casual walk, a person keeps walking in a particular direction
while occasionally changing his/her direction. This walking
pattern can then be captured by the following model:

θ(k+ 1) =

{
θ(k) with probability p
Uniformly in µ with probability 1− p.

(1)
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Fig. 2: Occupants impact the received signal in two ways: LOS blockage and
multipath, samples of which are marked on the figure. It can be seen that the
LOS blockage results in more significant attenuations of the wireless mea-
surements, as compared to the fluctuations induced by the multipath. We use
the LOS blockage event sequence obtained from the wireless measurements
to estimate the occupancy attributes.

For the case of Fig. 1(a), people can change their direction any
time and can traverse the area back and forth as many times as
they wish. Thus, we have µ = [−θmax, θmax]∪ [π− θmax, π+
θmax], to capture this behavior. θmax then defines the maximum
angle for the direction of motion, and is an environment-
dependent parameter. For instance, in long hallways, people
may have a pattern more close to a straight line, resulting in a
smaller θmax, while in a supermarket, people may often deviate
from a straight line to check out grocery items. Parameterizing
the motion model with θmax then allows us to capture the
characteristics of different environments. For this closed-area
case, we assume that when a person encounters any of the
four boundaries of the area, she/he reflects off of the boundary,
similar to a ray of light.2

For the case of open area of Fig. 1(b), on the other hand,
we assume that people walk mainly in the forward direction,
entering from one end, and exiting from the opposite end of
the area. Such a motion behavior can characterize the motion
in many open areas, such as exhibitions and aisles. Thus, we
take µ = [−θmax, θmax] or µ = [π−θmax, π+θmax] depending
on the direction of motion.

Based on Eq. (1), the position dynamics are then given as
follows for both open and closed cases:

x(k + 1) = x(k) + vδt cos(θ(k))

y(k + 1) = y(k) + vδt sin(θ(k)),
(2)

where δt is the time step and v is the walking speed.

B. Effect of Pedestrians on Wireless Links

The occupants affect a link in two major ways: (i) Line of
Sight blockage effect and (ii) multipath effect. More specif-
ically, when a pedestrian blocks the LOS link, the received
signal strength drops significantly, to which we refer as Line
of Sight blockage effect. When the pedestrian is not along the
LOS path, on the other hand, she/he can act as a scatterer,
reflecting the transmissions from the Tx to the Rx, causing
fluctuations in the received signal, a phenomena known as
the multipath fading effect. Fig. 2 shows the impact of LOS
blockage and MP effects on the received wireless signal as
people walk in the area. As can be seen in the figure, LOS
blockage attenuates the received signal considerably while the
MP effect results in less significant fluctuations in the wireless

2This boundary behavior is only assumed for the purpose of modeling. In
our experiments, we have no control over how people walk.



signals. Our proposed methodology of this paper relies on the
LOS blockage events. Thus we first extract the LOS blockage
event sequence from the RSSI measurements, as shown in
Fig. 2. In Section III-A2, we show how to estimate the LOS
blockage sequence from the RSSI measurements.
C. Cross-correlation to Estimate the Crowd Speed

In this section, we propose to use the cross-correlation
between the LOS event sequences, corresponding to the two
WiFi links, and show that it contains implicit information
about the walking speed of the pedestrians in an area.

Consider the closed area of Fig. 1(a). Let Y1(k) and Y2(k)
denote the event sequences corresponding to Link 1 and Link
2, as defined below:

Yi(k) =

{
l if El happens at time k
0 otherwise

, for i ∈ {1, 2},

where El denotes an event corresponding to l people blocking
the LOS path. Fig. 2 shows a sample LOS blockage event
sequence. The cross-correlation between the two event se-
quences, Y1(k) and Y2(k), is then given by

RY1Y2(τ, v) =
Cov

(
Y1(k), Y2(k + τ)

)
√

Var
(
Y1(k)

)
Var
(
Y2(k + τ)

) , (3)

where Cov(. , .), and Var(.) denote the covariance and variance
of the arguments, respectively. Since the pedestrians walk
independent of each other, we have,

Yi(k) =

N∑
j=1

Y ji (k), for i ∈ {1, 2}, (4)

where Y ji (k) = 1 if the jth person blocks Link i at time k, and
is 0 otherwise, for i ∈ {1, 2}. N is the total number of people
in the area, which we take to be constant over the estimation
period for the closed case.
Lemma 1. The cross-correlation, RY1Y2

(τ, v), between the
event sequences Y1(k) and Y2(k) is a function of only the
speed of the people v in the area and is independent of the
number of people in the area for the case of closed area.

Proof. Consider the closed area of Fig. 1(a). Since we assume
independent motion for the pedestrians, it can be easily con-
firmed that the numerator and the denominator of Eq. (3) are
proportional to N , resulting in the cross-correlation becoming
independent of N . This can be seen by substituting Eq. (4) in
(3), and further simplifications, which results in
RY1Y2(τ, v) =

Prob(Y j2 (k + τ) = 1|Y j1 (k) = 1)− pc,single person

1− pc,single person
,

(5)

for any j ∈ {1, 2, · · · , N}, where pc,single person denotes the
probability of crossing a link by a single person. While it is
considerably challenging to derive a closed-form expression
for the cross-correlation, the dependency on the crowd speed
can be easily seen. For instance, the first term in the numerator
of Eq. (5), Prob(Y j2 (k+τ) = 1|Y j1 (k) = 1), is the probability
that the jth person is at Link 2 at time k+τ , given that she/he
is at Link 1 at time k. Clearly this depends on the speed at

which the jth person is walking. Hence the cross-correlation in
Eq. (5) contains information about the speed of the pedestrians.

Lemma 2. For the case of the open area, the cross-correlation
RY1Y2(τ, v) is a function of only the speed of the people v and
is independent of the rate of arrival, when the arrivals follow
a Poisson process.
Proof. The Lemma can be proved after a few lines. We skip
the proof due to space limitations.

For the case of open area of Fig. 1(b), deriving an expression
for the cross-correlation, for a general arrival process distri-
bution is considerably challenging. However, our extensive
simulations with various speed and arrival rate combinations
show that the cross-correlation is mainly a function of the
speed of the people in the area.

The strong dependency of the cross-correlation on the crowd
speed, for both open and closed cases, then allows us to
devise a simple low-complexity approach for estimating it.
More specifically, we simulate a single person walking in the
area, according to the motion dynamics in Eq. (2) and with
different possible speeds, and generate the event sequences
corresponding to the two links in the area. We then generate
a database for the cross-correlation function RY1Y2(τ, v) for
a range of walking speeds v. Since the cross-correlation is
independent of the number of people in the area, the database
for RY1Y2

(τ, v), obtained with 1 person walking in the area (or
one rate of arrival for the open case), is valid for any number
of people in the area. This makes the database generation a
one-time and low complexity operation. The walking speed
in an area is then estimated by matching the cross-correlation
with the database as follows:

v̂ = min
v

τ=T∑
τ=0

(
Rexp
Y1,Y2

(τ)−RY1,Y2
(τ, v)

)2

, (6)

where Rexp
Y1,Y2

(τ) is the cross-correlation between the two event
sequences obtained during the real experiment.
D. Characterization of the Probability of Crossing

To build a complete picture of occupancy attributes, we next
show that the pair of links can also estimate the total number
of people or their arrival rate to the area as well. We first
characterize the probability of crossing for the case of the
closed area of Fig. 1(a), the analysis of which is more involved
since a person can reverse the direction of motion anytime
and can bounce back and forth in the area as many times as
he/she wishes. We then show how to extend the analysis to
the case of open area of Fig. 1(b), putting everything under
one unifying umbrella. A key feature of our analysis is using
a generalized motion model where different motion behaviors
can be captured through the parameter θmax of Section II. We
then show how to derive a mathematical expression for the
probability of crossing a link, under this motion model.

1) Head Counting for the Case of Closed Area: Consider
Fig. 1(a) and the motion model of Eq. (2). Since the heading,
and the positions along the x-axis and y-axis at time k + 1,
depend only on the corresponding values at time k, we use a
Markov chain model to describe the motion dynamics of each



pedestrian. We then use the properties of the corresponding
Markov chain to mathematically derive the probability of
crossing a given link by a single pedestrian and show its de-
pendency on the walking speed of the pedestrian. This is then
followed by characterizing the probability that any number of
people cross a given link, and showing its dependency on the
total number of people and their speed.

For the purpose of modeling, we discretize the work-space
and assume that people can choose only discrete positions
along x-axis, y-axis, and the heading direction.3 More specif-
ically, θ(k) ∈ µd = {−θmax, −θmax + ∆θ, · · · , θmax}∪ {π−
θmax, π−θmax+∆θ, · · · , π+θmax}, x(k) ∈ {0, ∆x, · · · , B},
and y(k) ∈ {0, ∆y, · · · , L}, where ∆θ, ∆x, and ∆y denote
the discretization step size for heading and position along x-
axis and y-axis respectively. Let Nθ denote the number of
discrete angles for the heading.

Let Θ(k) denote the random variable representing the
heading of a pedestrian at time k. Let πθ(k) represent the cor-
responding probability vector with the ith element (πθ(k))i =
Prob(Θ(k) = (µd)i), where Prob(.) is the probability of the
argument, and (µd)i denotes the ith element of the set µd.
Then from Eq. (1), we have the following Markov chain for
the heading Θ(k):

πθ(k + 1) = πθ(k)PΘ, (7)
where PΘ is the probability transition matrix for the heading
with (PΘ)ij = Prob(Θ(k + 1) = (µd)j |Θ(k) = (µd)i) and is
given by (PΘ)ij = δ(i−j)×p+ 1−p

Nθ
= (PΘ)ji, where δ(.) is

the Dirac-delta function, Nθ = card(µd), and card(.) denotes
the number of elements in the argument. Since the probability
transition matrix PΘ is symmetric, it is a doubly-stochastic
matrix, which implies a uniform stationary distribution for
Θ(k) [28]. This implies that the probability that a pedestrian
heads in any given direction (in µd) is the same asymptotically.

Let X(k) denote the random variable representing the
position of a pedestrian along the x-axis at time k. Similar
to the heading direction, we can describe the dynamics of
X(k) using a Markov chain. Let PX denote the corresponding
probability transition matrix for X(k). Similar to the heading
dynamics we can show that the stationary distribution of X(k)
and Y (k) are uniform [24]. We next use these properties of
the motion dynamics to derive the probability that a pedestrian
crosses the LOS path.

We say that a pedestrian crosses/blocks a given link4 located
at Xi along the x-axis, at time k + 1, if either x(k + 1) ≥
Xi and x(k) ≤ Xi or x(k + 1) ≤ Xi and x(k) ≥ Xi.
Consider Fig. 1(a) and the motion model of Eq. (1)-(2).
Consider a time interval T , discretized to δt. We then define
the probability of crossing link i as follows:

pc = Number of blockage events in time interval [0 T]× δt

T

3This is only for the purpose of mathematical characterization. In practice,
the position and heading of the pedestrians are naturally not limited to these
discrete values.

4In this paper, we consider WiFi links that are located parallel to the y-axis
(see Fig. 1). However, the derivation of the probability of crossing can be
extended to any general link configuration following a similar approach.

We then have the following theorem for the probability of
crossing a link by a single pedestrian.

Theorem 1. The probability of crossing a link by a single
pedestrian in the area is given by pc,single person = vδt sinc(θmax)

B ,
where sinc(θmax) , sin(θmax)

θmax
with θmax in radians.

Proof. See the appendix for the proof of this Theorem.
We next consider the probability of crossing when there are

N people in the area. Since, we assume that people in the area
walk independent of each other, the probability of crossing, pc
is given as pc(N, v) = 1− (1− pc, single person)N . The number
of people in the area can then be estimated as follows:

N̂ = min
N

(pc(N, v̂)− pexp
c )2, (8)

where pexp
c =

pexp
c,1+pexp

c,2

2 and pexp
c,i for i ∈ {1, 2}, is the

probability of crossing corresponding to Link i obtained from
the experiment.
Remark 1. If θmax is assumed 90◦, the derivation of Theorem
1 simplifies to the expression derived in [24]. Theorem 1 then
generalizes the derivation of pcross to accommodate any θmax,
thus making it applicable to any environment.

2) Rate of Arrival Estimation for the case of Open Area:
Consider the scenario of Fig. 1(b) in which people can
enter/exit from either side of the area as marked. In this case,
the number of people in the area changes with time and hence
it is a random variable. As we discussed in Section II-C, the
cross-correlation is mainly a function of the speed of people,
and thus Eq. (6) can be utilized to estimate the speed of the
pedestrians for both open and closed areas. However, we need
to extend the probability of crossing analysis to the case of
time-varying number of people in order to estimate the rate of
arrival to the area, as we show in this part.

Let λ denote the rate of arrival of people into the area (from
both ends). In scenarios modeled by the open area, such as a
retail store, people typically enter an aisle, spend a random
amount of time in the area depending on their interest, before
exiting it. Therefore, assuming that the rate of departure is
the same as the rate of arrival λ is a reasonable assumption.
Furthermore people typically walk mainly in the forward
directions rarely turning back. Under these assumptions, the
probability of crossing a link in the area can be related to the
rate of arrival into the area as follows:

pc =Number of events in time interval [0 T]× δt

T
= λδt.

We then estimate the rate of arrival, λ, from the crossing
probability of each WiFi link as λ̂ =

pexp
c,1+pexp

c,2

2δt .

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
system using extensive experiments. We start with several
experiments in closed areas, where different number of people
(up to 20) walk with a variety of speeds, in both indoor and
outdoor environments, and show that our proposed approach
can accurately estimate the occupancy attributes. In particular,
our experiments with 20 people show that our system can
estimate occupancy attributes for highly-dense areas. We then
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Fig. 3: (a) D-Link WBR 1310 wireless router along with an omni-directional
antenna, (b) the TP-Link wireless N150 WLAN card, (c) Raspberry Pi board
used to control the data collection process and synchronize the two WiFi links.

show our experimental results for the open-area cases, in both
outdoor and indoor environments. Finally, we test our system
in a local retail store, Costco, to estimate the rate of arrival
and the speed of people in an aisle. Overall, our extensive tests
indicate that the proposed approach can accurately estimate the
occupancy attributes for both closed and open areas.
A. Experiment Setup

In all our experiments, a pair of WiFi links, located in the
area of interest, make RSSI measurements as people walk
in the area. Each WiFi link uses a WBR 1310 router as a
Tx and a TP-Link wireless N150 WLAN card as a receiver.
The Rx of each WiFi link is interfaced with a RaspberryPi
(RPI) which controls the data collection operation and stores
the corresponding RSSI measurements. Fig. 3 shows the WiFi
router, WLAN card, and RPI used in our experiments. This
setup is used in all the experiments of the paper. In order
to derive the cross-correlation from the experimental data, the
receivers of the two WiFi links need to be synchronized in
time. To achieve this, we interface the Rx nodes of both WiFi
links to the same RPI and program them to receive the wireless
signals from their corresponding transmitters at the same time
instants. The data is collected at a rate of 20 samples/second
at each receiver of the WiFi link. Each link is configured to
operate in a different sub-channel of the 2.4 GHz wireless band
to avoid any interference. Specifically, we use sub-channel 1,
which operates at 2.41 GHz for one link, and sub-channel 13,
which operates at 2.47 GHz, for the other link. This separates
the two links by the widest frequency margin in the 2.4 GHz
WiFi band.

1) Pedestrian Walking Speeds: As shown in Fig 1, our
experiments involve different number of people walking at
different speeds in the area. We consider three different speeds
0.3 m/s (slow), 0.8 m/s (normal walking), and 1.6 m/s (fast)
in our experiments. We ask people to walk casually at a
given speed in an experiment. To help people walk at the
correct speed, we make use of a mobile application called
“Frequency Sound Generator” which generates an audible tone
every second. Each person then listens to this application on
his/her mobile and takes a step of length v. This ensures
correct speeds for people walking in the area. In order to take
steps of length v, we have people practice their step lengths to
match v prior to the experiments. This procedure is employed

only to ensure an accurate ground-truth for the speeds, which
is used in assessing the performance of our approach. In our
experiments in the aisle of Costco, the speeds of people are
naturally determined by their interests in each region, and as
such there is no control over peoples’ speeds.

2) Separation of LOS from MP: As shown in Section II,
our framework is based on the event sequences of a pair of
WiFi links located in the area, with the events corresponding to
people crossing a WiFi link. Therefore, we need to first extract
the event sequences of each WiFi link from the corresponding
RSSI measurements. We next describe this process.

To convert the RSSI measurements into an LOS event
sequence, we first identify all the dips in the RSSI measure-
ments and the associated times at which the dips occur. Let
kij , for j ∈ {1, 2, · · · , Ji}, denote these times for link i, and
let Zi(kij) denote the corresponding RSSI measurement at time
kij on link i. The event sequence, Y exp

i (k), for i ∈ {1, 2}, is
then obtained from the RSSI measurements as follows:

Y exp
i (k) =

{
l if k = kij and Zi(kij) is closest to Rl,i
0 otherwise

,

where Rl,i denotes the RSSI measurement of the ith WiFi
link when l people simultaneously block the ith link. We find
the values of Rl,i by performing a small calibration phase
in which l (up to 2) people simultaneously block the ith WiFi
link and the corresponding RSSI is measured.5 Note that small
variations in Rl,i due to factors such as different dimensions
of people crossing the WiFi link have a negligible impact on
our results. For instance, we collect Rl,i data for only 2 people
in the calibration phase, while a total of 10 different people
walk in each campus experiment.

B. Experimental Results and Discussion

In this section, we extensively validate our proposed system
with several experiments using the aforementioned experiment
setup. We first show our results for the case of closed area,
followed by the open area, and the retail store results.

Closed Area: Fig. 4 and 5 show the considered outdoor and
indoor closed areas of interest respectively. The dimensions
of the outdoor area are B = 14.3 m and L = 4.26 m and
the transceivers are marked on the figure. For the case of
indoor, on the other hand, the dimensions are B = 20 m,
L = 2.25 m, and the transceivers are marked on the figure.
In our first series of experiments, we collect measurements in
these areas when 5 and 9 people walk with 3 different speeds
in each area (6 different possibilities). Table I then shows the
estimates of the occupancy attributes obtained by our system in
the outdoor and indoor areas. It can be seen that the proposed
system accurately estimates both the number of people and
their walking speeds in both indoor and outdoor settings.

To further validate our system statistically, we repeat exper-
iments for each combination of N and v on 3 different days
for both the indoor and outdoor areas, running a total of 36
experiments. Table II then shows the normalized mean square

5We need to collect this only for small l as the probability of l people
simultaneously blocking the LOS link is negligible for higher l.
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Fig. 4: The outdoor area of interest. The dimensions of
the area are L = 4.26 m and B = 14.3 m. Two WiFi
links, each consisting of a transmitter and a receiver,
are located in the area, as marked.

Rx1

Rx2

Tx1

Tx2

Fig. 5: The indoor area of interest. The dimensions of
the area are L = 4.26 m and B = 9.76 m. Two WiFi
links are located in the area, as marked on the figure.

Fig. 6: A snapshot of the experiment
when a large number of people (20) are
walking in the indoor area of interest.

True Headcount
and Speed

(N , v)

Estimated Headcount
and Speed

in Outdoor Area
(N̂ , v̂)

Estimated Headcount
and Speed

in Indoor Area
(N̂ , v̂)

(5, 0.3) (5, 0.4) (6, 0.5)
(5, 0.8) (4, 0.9) (4, 1)
(5, 1.6) (4, 1.9) (4, 1.6)
(9, 0.3) (10, 0.4) (9, 0.5)
(9, 0.8) (9, 0.9) (10, 0.9)
(9, 1.6) (7, 1.9) (7, 1.9)

TABLE I: Sample performance of our proposed system to estimate the
total number and the speed of the people in closed areas – the middle
and right columns show the performance for the outdoor area of Fig. 4
and the indoor area of Fig. 5 respectively, while the left column shows
the groundtruth.

NMSE of
Speed

Estimates

MAE of
Headcount
Estimates

0.046 (4.6%) 1.3 person

TABLE II: Average performance (aver-
aged over several trials) in closed areas
– the table shows the Normalized Mean
Square Error (NMSE) of the speed es-
timation, and the Mean Absolute Er-
ror (MAE) of head counting, based on
several experiments in both indoor and
outdoor settings.

True Headcount
and Speed

(N , v)

Estimated Headcount
and Speed

(N̂ , v̂)

(20, 0.3) (22, 0.4)

(20, 1.6) (19, 1.6)

TABLE III: Performance of our system
in very crowded areas – the table shows
the performance when 20 people walk,
with a variety of speeds, in the indoor
area of Fig. 6. It can be seen that our
approach can estimate the speed and
number of people accurately even at
high crowd densities.
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Fig. 7: CDF of the normalized square
error for crowd speed estimation in
closed areas (both indoor and out-
door). It can be seen that our approach
can estimate the crowd speed with a
good accuracy.
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Fig. 8: CDF of the absolute error
for head counting in closed areas. It
can be seen that our approach can
estimate the number of people with
a good accuracy.
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Fig. 9: CDF of the normalized
square error for crowd speed esti-
mation as a function of the location.
It can be seen that the performance
in outdoor and indoor locations are
comparable.
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Fig. 10: CDF of the absolute error
for head counting as a function of
the location. It can be seen that the
performance in outdoor and indoor
locations are comparable.

error (NMSE) of the speed estimation of all the experiments
as 0.046 (i.e., 4.6%) and the mean absolute error (MAE) in
estimating the total number of people as 1.3, which further
confirms the high accuracy of our proposed system. Fig. 7 and
8 further show the cumulative distribution function (CDF) of
the normalized square error (NSE) for speed estimation and
the CDF of the absolute error for head counting, respectively.
It can be seen that the NSE of speed estimation is less than
or equal to 0.1, 92% of the time, and the occupancy estimates
are within 1 person error 70% of the time and within 2 people
error 92% of the time, thus establishing the robust nature
of our proposed system. We further note that the proposed
system has a low computational complexity. For instance, it
took 0.2 seconds to solve for the case of N = 20 and v = 0.3.

Furthermore, it converges after collecting RSSI measurements
for a couple of minutes, with several cases (those with higher
speeds) converging in much less than a minute.

We next consider the impact of the environment on the
estimation performance. More specifically, Fig. 9 and 10
compare the CDF error curves of the indoor and outdoor areas,
for speed estimation and head counting respectively. It can
be seen that both the indoor and outdoor areas have similar
performances.

To further validate our proposed system in very dense
areas with a large number of people, we run a number of
experiments where 20 people walked in the area of Fig. 6, with
2 different speeds. As the figure shows, the area can get very
crowded when 20 people are present. Table III then shows the
performance of our system. It can be seen that our approach



True Arrival
Rate and

Crowd Speed
(λ, v)

Estimated Arrival
Rate and Speed
in Outdoor Area

(λ̂, v̂)

Estimated Arrival
Rate and Speed
in Indoor Area

(λ̂, v̂)

(0.2, 0.3) (0.2, 0.4) (0.22,0.4)

(0.2, 0.8) (0.16, 0.8) (0.21, 0.7)

(0.2, 1.6) (0.15, 1.6) (0.14, 2.2)

(0.1, 0.3) (0.1, 0.3) (0.14, 0.1)

(0.1, 0.8) (0.1, 1) (0.1, 1)

(0.1, 1.6) (0.09, 1.5) (0.08,2)

TABLE IV: A sample performance of our sys-
tem when estimating the arrival rate and speed
of the people in open areas – the middle and
right columns show the performance for the
outdoor area of Fig. 4 and indoor area of Fig.
5 respectively, while the left column shows the
groundtruth.
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Fig. 11: CDF of the normalized
square error for crowd speed
estimation in open areas (both
indoor and outdoor). It can be
seen that our approach can es-
timate the crowd speed with a
good accuracy.
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Fig. 12: CDF of the normalized
square error for crowd arrival
rate estimation in open areas
(both indoor and outdoor). It
can be seen that our approach
can estimate the crowd arrival
rate with a good accuracy.
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Fig. 13: The estimate of the rate of
arrival of people into the aisle of Fig. 14
at Costco, as a function of time. It can
be seen that our framework correctly
estimates the rate of arrival.

can estimate the occupancy attributes well even when the area
is considerably dense.

Open Area: In this section, we validate the performance
of our proposed system in open areas. More specifically, we
run experiments in the same outdoor and indoor areas of Fig.
4 and 5 but we allow people to enter/exit the area. In other
words, people enter the area from one side, walk in the area
at the given speed, but with any motion pattern they desire,
and then exit the area from the other end. We then run several
experiments for different combinations of rate of arrival into
the area and walking speed in the area. More specifically, we
consider Poisson-distributed arrival times with two rates of
0.2 person/second and 0.1 person/second, and walking speeds
of 0.3, 0.8, and 1.6 m/s. Table IV shows the performance of
our approach when estimating the arrival rate and speed of a
crowd, for both outdoor and indoor areas. It can be seen that
the proposed system can accurately estimate the occupancy
attributes of an open area. Fig. 11 and 12 further show the
CDF of the normalized square error for speed and arrival rate
estimation respectively. It can be seen that the NSE of speed
estimation is within 0.1, 83% of the time, and the NSE of rate
estimation is within 0.2, 100% of the time, thus establishing
the robust nature of our proposed system.

1) Costco Experiments: In this section, we use our pro-
posed system to estimate the motion behavior of the buyers in
an aisle of a retail store, Costco. Since people constantly come
and go through the aisle, this will be an example of the open
area scenario. We then estimate the rate of arrival of people
into the aisle, and the speed at which people walk while they
are exploring the aisle, thus assessing the popularity of the
products in the aisle.

Fig. 14 shows the aisle of interest in our local Costco.
This aisle contains a specific type of merchandise, snacks and
cookies in this case. Both ends of the aisle are open and people
can enter/exit from either end of the aisle. It is expected that
people walk at a slow pace if the products in the aisle generate
interest and they consider buying them. We are thus interested
in estimating such behaviors. A pair of WiFi links are located
along the aisle, as indicated in Fig. 14, and make wireless
measurements as people walk through the aisle. We then use
our approach of Section II to estimate the speed of people in
the aisle as well as their rate of arrival into the aisle.

More specifically, we collect wireless RSSI measurements

TX1

Tx2

Rx2 Rx1

TX1 Rx1

Fig. 14: The Costco experiment – the figure shows the considered “snacks
and cookies” aisle in Costco along with a pair of WiFi links positioned along
the aisle to make wireless measurements.
for 15 minutes as people walk through the aisle shown in Fig.
14. We manually record the times at which people arrive from
either entrance of the aisle, through visual observation since
camcording was not allowed, and compute the true rate of
arrival. Fig. 13 shows the estimated rate of arrival as a function
of time. It can be seen that our framework accurately estimates
the rate of arrival of people into the aisle using a pair of WiFi
links. Note that the rate of arrival on that particular day/time
was 1 person per minute (or 0.016 people/second). Thus, our
estimation converges relatively fast, within 400 seconds, which
is the time 6 people visited the aisle. Furthermore, the average
ground-truth speed of people walking in that aisle is estimated
as 0.48 m/s, by manually recording the entrance and exit times
of people. The average speed of people walking in the aisle
is then estimated as 0.2 m/s using our framework, which is
consistent with the ground-truth, and indicates a significant
slowdown, showcasing the popularity of the aisle.

Overall, our extensive experiments (total of 51) confirm that
the proposed approach can estimate the crowd speed and total
number (or arrival rate) robustly and with a high accuracy.

IV. CONCLUSIONS

In this paper, we proposed a system to estimate occupancy
attributes in an area such as the number of people, walking
speed, and the rate of arrival, by using RSSI measurements
of a pair of WiFi links, and in a device-free manner. More
specifically, we showed how two key statistics, the probability



of crossing and the cross-correlation between the two links,
carry key information about the occupancy attributes and
mathematically characterized them. To validate our frame-
work, we ran extensive experiments (total of 51) in indoor and
outdoor locations, with up to 20 people and with a variety of
speeds, and showed that our approach can accurately estimate
the occupancy attributes of an area. The NMSE of crowd
speed estimation over all the experiments is 0.047, while the
NMSE of the arrival rate estimation is 0.034, and the MAE
of head counting is 1.3. Finally, we used our framework in
Costco, estimated the motion behavior of buyers in an aisle,
and deduced the popularity of the products in that aisle.

To the best of our knowledge this is the first time that the
speed of a crowd is estimated passively with WiFi signals, or
the speed and number of people is jointly estimated for both
open and closed areas.

APPENDIX
A. Proof of Theorem 1

Consider a link located in the area of Fig. 1(a), whose
x-coordinate is Xi. Xi, for instance, can represent the x-
coordinate of either of the links of Fig. 1(a). Let the po-
sition of the person at time k be x(k) ≤ Xi. The per-
son crosses the link at time k + 1, if she/he chooses a
direction θ(k) at time k such that x(k) + vδtcos(θ(k)) ≥
Xi, which results in |θ(k)| ≤ cos−1

(
Xi−x(k)
vδt

)
, where |.| is

the absolute value of the argument. Since |θ(k)| ≤ θmax, in
order to cross the link, the heading direction has to satisfy
|θ(k)| ≤ min

{
θmax, cos−1

(
Xi−x(k)
vδt

)}
. Since the heading

direction is uniformly distributed over µd, the probability
that a person at x(k) crosses the link at time k + 1,
p
x(k)
c,singleperson, for x(k) ≤ Xi, is given by, px(k)

c,singleperson =

min

{
θmax, cos−1

(
Xi−x(k)
vδt

)}
2θmax

. By symmetry, it can be seen that
p
x(k)
c,singleperson, for x(k) ≥ Xi, is given by, px(k)

c,singleperson =

min

{
π−θmax, π−cos−1

(
x(k)−Xi
vδt

)}
2θmax

. The probability of crossing
the link by a single person, pc,singleperson, is then obtained by
summing over all the positions from which a cross can occur:

pc,singleperson =

Xi+vδt∑
x(k)=Xi−vδt

∆x

B
p
x(k)
c,singleperson, (9)

where ∆x
B is the probability that a pedestrian is located

at any given position in the area. By substituting the ex-
pression for p

x(k)
c,singleperson in (9) and letting δt → 0, we

get, pc,singleperson =

∫Xi+vδt
Xi−vδt

min

{
θmax, cos−1

(∣∣∣Xi−x(k)vδt

∣∣∣)}dx
2Bθmax

. By
simplifying this further, we get pc,singleperson = vδtsin(θmax)

Bθmax
,

which proves the Theorem.
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